Announcement

Collapse
No announcement yet.

Determining Relative Motion

Collapse
X
 
  • Filter
  • Time
  • Show
Clear All
new posts

  • Determining Relative Motion

    Rule <G45> says
    MECHANISMS are considered “active” if they are in motion relative to the ROBOT while in contact with the BALL.
    My question is, how to determine if something is moving relative to the robot. Interpreted broadly this would mean that any movement of your robot would be illegal because a point on that moving part would be moving relative to the "active" mechanism referenced in the rule. This is clearly not the intent of the rule. From an engineering perspective it seems that defining relative motion requires defining a point to represent the position of the mechanism and another point to define the position of the robot. If the the distance or angles(as referenced from the field surface) between these points change, then there has been some relative motion. How then, are these points determined?

  • #2
    Re: Determining Relative Motion

    I think you are over complicating matters. Imagine the robot is a car. Things in the car are stationary with respect to the car but moving with respect to the road. They'd be considered passive.
    Last edited by EVanWyk; 01-20-2010, 04:48 PM.

    Comment


    • #3
      Re: Determining Relative Motion

      Originally posted by EVanWyk View Post
      I think you are over complicating matters. Imagine the robot is a car. Things in the car are stationary with respect to the car but moving with respect to the road. They'd be considered passive.
      The problem seems to be how you define the car (or robot in our case), suppose you have a car with two parts that can extend or contract relative to each other. Thus sometimes it will look like this |-|, where | represent one of the two parts, and other times it will look like this |--|. Because the car includes both of these parts, are they moving relative to the car? What if the front part is say an extendible bumber, would the rest of the car be moving? What if the car is split down the middle, and is composed of two identical parts, which one is moving(the part) and which one is stationary(the car)?

      Please not that I am not trying to "lawyer" the rules or find loop-holes, but I am trying to better understand the concept of self-referential relative motion of complex objects.
      Last edited by RobertG; 01-20-2010, 05:39 PM.

      Comment

      Working...
      X